Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.477
Filtrar
2.
Ann Clin Lab Sci ; 54(1): 26-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38514058

RESUMO

OBJECTIVE: This study aimed to investigate the roles of nuclear factor-kappa B p65 (NF-[Formula: see text]B p65) and tumor necrosis factor-α (TNF-α) in cell apoptosis occurring in the fetal membranes of pregnant women who experience preterm premature rupture of membranes (PPROM). METHODS: This was a case-control study involving 57 pregnant women who delivered in the obstetric department of Affiliated Loudi Hospital, Hengyang Medical School, University of South China, from June 2021 to June 2022. Samples of fetal membrane tissue were collected from pregnant women with PPROM (n=27) and pregnant women who had normal deliveries (control group; n=30). The membrane tissue morphology of both groups was observed, and the expression of NF-[Formula: see text]B p65, p-NF-[Formula: see text]B p65, TNF-α, and caspase-3 was detected. Apoptosis in fetal membranes was examined. RESULTS: Morphological evaluation of the fetal membrane tissues obtained from patients with PPROM revealed an abnormal structure with a thin collagen fiber layer and cells with a largely vacuolar cytoplasm. There was a positive correlation between the expression of p-NF-[Formula: see text]B p65/NF-[Formula: see text]B p65 and cell apoptosis (r1 =0.89, R2 =0.805, P=0.00). Furthermore, TNF-α was positively correlated with fetal membrane cell apoptosis (r2 =0.93, R2=0.881, P=0.00). CONCLUSION: NF-[Formula: see text]B p65 is involved in the occurrence of PPROM by promoting the expression of TNF-α, which upregulates caspase-3 to cause apoptosis of fetal membrane cells.


Assuntos
Apoptose , Membranas Extraembrionárias , Ruptura Prematura de Membranas Fetais , Fator de Transcrição RelA , Fator de Necrose Tumoral alfa , Feminino , Humanos , Gravidez , Estudos de Casos e Controles , Caspase 3/metabolismo , Membranas Extraembrionárias/metabolismo , Membranas Extraembrionárias/patologia , Ruptura Prematura de Membranas Fetais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição RelA/metabolismo , Adulto
3.
Methods Mol Biol ; 2781: 71-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502444

RESUMO

The maternal decidua is a transient and dynamic tissue that functions as an immunoprivileged matrix related to nutritional and endocrine processes. The function of decidual cells is key to the success of embryo implantation and the maintenance of pregnancy with a positive maternal-fetal outcome. Therefore, establishing a method to optimize the isolation of primary decidual cells is essential. Our protocol described here provides a good yield of decidual cells in an optimized time.


Assuntos
Decídua , Placenta , Gravidez , Feminino , Humanos , Implantação do Embrião , Membranas Extraembrionárias
4.
Methods Mol Biol ; 2781: 27-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502440

RESUMO

Leukocyte infiltration into the maternal-fetal interface is a consequence of the robust inflammation in the gestational tissues during term labor and preterm labor with or without infection. During pregnancy, the fetal membranes act as a physical barrier that isolates the fetus into the amniotic cavity, keeping it in an optimal environment for its development. In addition, the fetal membranes possess immunological competencies such as the secretion of cytokines and chemokines in response to different stimuli. Clinical and experimental evidence indicates that these tissues are involved in the extensive chemotaxis of immune cells in normal or pathological conditions.Few studies have evaluated the chemotactic capacities of the fetal membranes considering that this tissue is composed of two adjacent tissues, the amnion and the chorion, which have different characteristics. Although these tissues function as a unit, their response is complex since there is an interaction between them, where each tissue contributes differently. The protocol described here allows us to evaluate the in vitro chemotactic capacities of fetal membranes in response to various applied stimuli, considering the contribution of each of their components (amnion and choriodecidua) using a Boyden chamber assay and phenotyping the chemo-attracted leukocytes by flow cytometry.


Assuntos
Membranas Extraembrionárias , Trabalho de Parto , Gravidez , Recém-Nascido , Feminino , Humanos , Âmnio , Córion , Quimiotaxia de Leucócito
5.
Methods Mol Biol ; 2781: 61-69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502443

RESUMO

During pregnancy, the fetal membranes composed of the amnion and chorodecidua constitute a selective barrier separating two distinct environments, maternal and fetal. These tissues have the function of delimiting the amniotic cavity. Their histological complexity gives them physical, mechanical, and immunological properties to protect the fetus. Although the study of the amnion, chorion, and decidua separately provides knowledge about the functions of the fetal membranes, the protocol we describe in this chapter has the advantage of maintaining the biological and functional complexity of these tissues. In addition, this experimental model allows the researcher to recreate various pathological scenarios because this model allows for differential stimulation of the amnion or choriodecidua.


Assuntos
Decídua , Membranas Extraembrionárias , Gravidez , Feminino , Humanos , Âmnio , Córion , Feto
6.
Methods Mol Biol ; 2781: 105-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502447

RESUMO

Modeling human pregnancy is challenging as two subjects, the mother and fetus, must be evaluated in tandem. To understand pregnancy, parturition, and adverse pregnancy outcomes, the two feto-maternal interfaces (FMi) that form during gestation (i.e., the placenta and fetal membrane) need to be investigated to understand their biological roles, and organ dysfunction can lead to adverse outcomes. Adverse pregnancy outcomes such as preterm rupture of the membranes, spontaneous preterm birth, preeclampsia, intra-uterine growth restriction, and gestational diabetes rates are on the rise worldwide, highlighting the need for future studies and a better understanding of molecular and cellular pathways that contribute to disease onset. Current in vivo animal models nor in vitro cell culture systems can answer these questions as they do not model the function or structure of human FMis. Utilizing microfabrication and soft-lithography techniques, microfluidic organ-on-chip (OOC) devices have been adapted by many fields to model the anatomy and biological function of complex organs and organ systems within small in vitro platforms.These techniques have been adapted to recreate the fetal membrane FMi (FMi-OOC) using immortalized cells and collagen derived from patient samples. The FMi-OOC is a four-cell culture chamber, concentric circle system, that contains both fetal (amniochorion) and maternal (decidua) cellular layers and has been validated to model physiological and pathological states of pregnancy (i.e., ascending infection, systemic oxidative stress, and maternal toxicant exposure). This platform is fully compatible with various analytical methods such as microscopy and biochemical analysis. This protocol will outline this device's fabrication, cell loading, and utility to model ascending infection-related adverse pregnancy outcomes.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Animais , Humanos , Placenta/metabolismo , Membranas Extraembrionárias/metabolismo , Linhagem Celular , Tecnologia
7.
Methods Mol Biol ; 2781: 179-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502454

RESUMO

This chapter outlines the methodology employed to infect the chorionic and amniotic membranes with Mycobacterium tuberculosis during pregnancy. Particularly, congenital tuberculosis, a rare and serious condition associated with cases in neonates and reactivation of latent tuberculosis in pregnant mothers, is interesting to study. Understanding the mechanisms of infection and the response of fetal membranes is crucial for developing effective treatments in these cases, which will promote better neonatal and maternal health in situations of tuberculosis during pregnancy. Establishing a standardized infection model in the chorioamniotic membranes is imperative, followed by a treatment protocol for isolating both cellular and mycobacterial RNA. This will enable the expression analysis during the maternal-fetal interface interaction with M. tuberculosis. The proposed methodology might be invaluable for qRT-PCR, microarrays, and sequencing research.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Gravidez , Recém-Nascido , Feminino , Humanos , Mycobacterium tuberculosis/genética , RNA , Membranas Extraembrionárias , Âmnio
8.
BMC Med Genomics ; 17(1): 72, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443884

RESUMO

BACKGROUND: Globally, preterm birth remains the leading cause of death in children younger than 5 years old. Spontaneous preterm birth is comprised of two events that may or may not occur simultaneously: preterm labor and preterm prelabor rupture of membranes (PPROM). To further explore the concept that spontaneous preterm birth can result from the initializing of two separate but overlapping pathological events, we compared fetal membrane tissue from preterm labor deliveries to fetal tissue from preterm labor with PPROM deliveries. We hypothesized that the fetal membrane tissue from preterm labor with PPROM cases will have an RNA-seq profile divergent from the fetal membrane tissue from preterm labor controls. METHODS: Chorioamnion, separated into amnion and chorion, was collected from eight gestationally age-matched cases and controls within 15 min of birth, and analyzed using RNA sequencing. Pathway enrichment analyses and functional annotations of differentially expressed genes were performed using KEGG and Gene Ontogeny Pathway enrichment analyses. RESULTS: A total of 1466 genes were differentially expressed in the amnion, and 484 genes were differentially expressed in the chorion (log2 fold change > 1, FDR < 0.05) in cases (preterm labor with PPROM), versus controls (preterm labor only). In the amnion, the most significantly enriched (FDR < 0.01) KEGG pathway among down-regulated genes was the extracellular matrix receptor interaction pathway. Seven of the most significantly enriched pathways were comprised of multiple genes from the COL family, including COL1A, COL3A1, COL4A4, and COL4A6. In the chorion, the most significantly enriched KEGG pathways in up-regulated genes were chemokine, NOD receptor, Toll-like receptor, and cytokine-cytokine receptor signaling pathways. Similarly, KEGG pathway enrichment analysis for up-regulated genes in the amnion included three inflammatory pathways: cytokine-cytokine interaction, TNF signaling and the CXCL family. Six genes were significantly up regulated in chorionic tissue discriminated between cases (preterm labor with PPROM) and controls (preterm labor only) including GBP5, CXCL9, ALPL, S100A8, CASP5 and MMP25. CONCLUSIONS: In our study, transcriptome analysis of preterm fetal membranes revealed distinct differentially expressed genes for PPROM, separate from preterm labor. This study is the first to report transcriptome data that reflects the individual pathophysiology of amnion and chorion tissue from PPROM deliveries.


Assuntos
Ruptura Prematura de Membranas Fetais , Trabalho de Parto Prematuro , Nascimento Prematuro , Recém-Nascido , Criança , Feminino , Humanos , Pré-Escolar , Nascimento Prematuro/genética , Membranas Extraembrionárias , Trabalho de Parto Prematuro/genética , Perfilação da Expressão Gênica , Transcriptoma , Citocinas
9.
Am J Pathol ; 194(5): 684-692, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320630

RESUMO

Preterm, prelabor rupture of the human fetal membranes (pPROM) is involved in 40% of spontaneous preterm births worldwide. Cellular-level disturbances and inflammation are effectors of membrane degradation, weakening, and rupture. Maternal risk factors induce oxidative stress (OS), senescence, and senescence-associated inflammation of the fetal membranes as reported mechanisms related to pPROM. Inflammation can also arise in fetal membrane cells (amnion/chorion) due to OS-induced autophagy and epithelial-mesenchymal transition (EMT). Autophagy, EMT, and their correlation in pPROM, along with OS-induced autophagy-related changes in amnion and chorion cells in vitro, were investigated. Immunocytochemistry staining of cytokeratin-18 (epithelial marker)/vimentin (mesenchymal marker) and proautophagy-inducing factor LC3B were performed in fetal membranes from pPROM, term not in labor, and term labor. Ultrastructural changes associated with autophagy were verified by transmission electron microscopy of the fetal membranes and in cells exposed to cigarette smoke extract (an OS inducer). EMT and LC3B staining was compared in the chorion from pPROM versus term not in labor. Transmission electron microscopy confirmed autophagosome formation in pPROM amnion and chorion. In cell culture, autophagosomes were formed in the amnion with OS treatment, while autophagosomes were accumulated in both cell types with autophagy inhibition. This study documents the association between pPROMs and amniochorion autophagy and EMT, and supports a role for OS in inducing dysfunctional cells that increase inflammation, predisposing membranes to rupture.


Assuntos
Membranas Extraembrionárias , Ruptura Prematura de Membranas Fetais , Feminino , Recém-Nascido , Humanos , Membranas Extraembrionárias/metabolismo , Ruptura Prematura de Membranas Fetais/metabolismo , Inflamação/patologia , Transição Epitelial-Mesenquimal , Autofagia
10.
Theriogenology ; 218: 231-238, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359561

RESUMO

Pregnancy course depends on the appropriate connection between the mother and the developing foetus. Pregnancy is completed when the placenta is timely expelled. Placental retention is one of the possible pregnancy complications. Extracellular matrix, including adhesive proteins and enzymes that can break down collagens, seems to be responsible for it. The aim of the present study was to examine the impact of one of the adhesive proteins - glycodelin (Gd) - on selected metalloproteinases degrading collagens (MMP2, MMP3, MMP7). Placental tissues from healthy pregnant cows collected during early-mid pregnancy (2nd month n = 7, 3rd month n = 8, 4th month n = 6) and in cows that properly released placenta (NR; n = 6) and cows with retained foetal membranes (R; n = 6) were experimental material. The concentrations of glycodelin and protein content of selected metalloproteinases were measured by ELISA in the maternal and foetal placental homogenates as well as in the culture of epithelial cells derived from the maternal part of the placenta. The presence of these protein molecules was confirmed by Western Blotting. In the bovine placenta, the concentrations of examined proteins exhibit significant changes during placental formation. Gd, MMP3 and MMP7 concentrations decrease with pregnancy progress (between the 2nd and 4th month), while MMP2 concentrations were on the same level in this period. During parturition, concentrations of Gd and MMP3 were significantly higher in the R group compared to the NR group. In parallel, MMP2 concentrations did not show significant differences between the groups (NR vs R), and MMP7 concentrations decreased significantly in the maternal part of the placenta in cows with retained foetal membranes (R). Obtained results show correlations between the gestational age and proteins' (Gd, MMP3, MMP7) concentration, both in the maternal and foetal part of the placenta.


Assuntos
Doenças dos Bovinos , Placenta Retida , Gravidez , Animais , Feminino , Bovinos , Placenta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Glicodelina/metabolismo , Parto , Placenta Retida/veterinária , Placenta Retida/metabolismo , Proteínas/metabolismo , Membranas Extraembrionárias/metabolismo , Doenças dos Bovinos/metabolismo
11.
Placenta ; 148: 59-68, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38401207

RESUMO

INTRODUCTION: Almost 80% of urinary tract infections during pregnancy are caused by uropathogenic strains of Escherichia coli. Alpha-hemolysin, toxin secreted by them, has a fundamental role in this pathology development. Considering that urinary tract infections are related with premature rupture of fetal membranes, we proposed to evaluate the effects that alpha-hemolysin induces on human-fetal-membranes. METHODS: Thirteen fetal membranes obtained from elective cesarean sections (>37 weeks) were mounted in a transwell-device generating two independent chambers. To mimic an ascendant-urinary-tract infection, membranes were incubated with different concentrations of pure alpha-hemolysin from the choriodecidual side during 24h. Extensive histological analyses were performed and transepithelial electrical-resistance were determined. Cell viability, metalloproteinase activity and cyclooxygenase-2- gene expression was estimated by lactate-dehydrogenase-release assay, zymography and RT-qPCR, respectively. Finally, four fetal membranes were treated with hemolysin preincubated with polyclonal anti-hemolysin antibodies. Cell viability and metalloproteinase activity were monitored. RESULTS: After 24 h of treatment, fetal membranes evidenced a structural damage and a decrease in membrane resistance that progressed as the concentration of alpha hemolysin increased. While the amniotic-epithelial-layer remained practically unaffected, the chorion cells manifested an increase in vacuolization and necrosis. In addition, the extracellular matrix exhibited collagen-fiber disorganization, a marked decrease in fiber content, and became thicker in presence of the toxin. Cyclooxigenase-2 expression and metalloproteinase activity were also higher in the treated groups than in untreated ones. Finally, a preincubation of hemolysin with specific antibodies prevented the cytotoxicity on the chorion cells and the increase in metalloproteinase activity. DISCUSSION: Hemolysin induces structural and molecular changes associated with the remodeling of human-fetal-membranes in-vitro.


Assuntos
Escherichia coli , Infecções Urinárias , Gravidez , Feminino , Humanos , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Membranas Extraembrionárias/metabolismo , Infecções Urinárias/metabolismo , Metaloproteases/metabolismo
12.
Prenat Diagn ; 44(3): 317-324, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168862

RESUMO

OBJECTIVE: To compare the biomechanical properties of fetal preterm membranes (20 + 0 weeks to 30 + 0 weeks) to those of the term (37 + 0 to 41 + 0 weeks). METHOD: Amnion and chorion were manually separated and samples were cut to the required geometry. Rectangular samples with (mode 1) and without (uniaxial) a notch, were tested for tearing energy, critical elongation, and tangent stiffness. Suture retention and inter-suture distance testing investigated the effect of suture placement. RESULTS: From the 15 preterm and 10 term placentas studied, no notable differences were observed in uniaxial testing. Mode 1 fracture testing showed a difference in tearing energy between the preterm and term chorion (0.025 ± 0.005 vs. 0.017 ± 0.005 J/m-1 ; p = 0.027) but not in the amnion (0.030 ± 0.017 vs. 0.029 ± 0.009 J/m-1 ; p = 0.895). Both preterm amnion and chorion showed a higher critical elongation compared with term (1.229 ± 0.057 vs. 1.166 ± 0.046; p = 0.019 and 1.307 ± 0.049 vs. 1.218 ± 0.058; p = 0.012). Preterm amnion had a higher suture retention strength than its term counterpart (0.189 ± 0.065 vs. 0.121 ± 0.031 N; p = 0.023). In inter-suture distance tests, no significant interaction was observed beyond 3 mm, but the preterm chorion showed less interaction at 1-2 mm distances. CONCLUSION: Preterm membranes have equivalent or superior tensile properties to term membranes. The chorion appears to contribute to the mechanical integrity of fetal membranes, particularly in preterm stages.


Assuntos
Âmnio , Membranas Extraembrionárias , Humanos , Gravidez , Feminino , Recém-Nascido , Córion , Placenta
13.
Am J Reprod Immunol ; 91(1): e13807, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282602

RESUMO

BACKGROUNDS: Infection during pregnancy is a significant public health concern due to the increased risk of adverse birth outcomes. Group B Streptococcus or Streptococcus agalactiae (GBS) stands out as a major bacterial cause of neonatal morbidity and mortality. We aimed to explore the involvement of reactive oxygen species (ROS) and oxidative stress pathways in pro-inflammatory responses within human fetal membrane tissue, the target tissue of acute bacterial chorioamnionitis. METHODS: We reanalyzed transcriptomic data from fetal membrane explants inoculated with GBS to assess the impact of GBS on oxidative stress and ROS genes/pathways. We conducted pathway enrichment analysis of transcriptomic data using the Database for Annotation, Visualization and Integrated Discovery (DAVID), a web-based functional annotation/pathway enrichment tool. Subsequently, we conducted ex vivo experiments to test the hypothesis that antioxidant treatment could inhibit pathogen-stimulated inflammatory responses in fetal membranes. RESULTS: Using DAVID analysis, we found significant enrichment of pathways related to oxidative stress or ROS in GBS-inoculated human fetal membranes, for example, "Response to Oxidative Stress" (FDR = 0.02) and "Positive Regulation of Reactive Oxygen Species Metabolic Process" (FDR = 2.6*10-4 ). There were 31 significantly changed genes associated with these pathways, most of which were upregulated after GBS inoculation. In ex vivo experiments with choriodecidual membrane explants, our study showed that co-treatment with N-acetylcysteine (NAC) effectively suppressed the release of pro-inflammatory cytokines (IL-6, IL-8, TNF-α) and prostaglandin PGE2, compared to GBS-treated explants (p < .05 compared to GBS-treated samples without NAC co-treatment). Furthermore, NAC treatment inhibited the release of cytokines and PGE2 stimulated by lipoteichoic acid (LTA) and lipopolysaccharide (LPS) in whole membrane explants (p < .05 compared to LTA or LPS-treated samples without NAC co-treatment). CONCLUSIONS: Our study sheds light on the potential roles of ROS in governing the innate immune response to GBS infection, offering insights for developing strategies to mitigate GBS-related adverse outcomes.


Assuntos
Corioamnionite , Infecções Estreptocócicas , Ácidos Teicoicos , Gravidez , Feminino , Recém-Nascido , Humanos , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Dinoprostona/metabolismo , Prostaglandinas/metabolismo , Streptococcus agalactiae , Membranas Extraembrionárias/metabolismo
14.
Theriogenology ; 215: 125-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052132

RESUMO

Embryo transfer (ET) and intracytoplasmic sperm injection (ICSI) are widely used in equine species, but their effects on fetal adnexa and neonates have not been investigated yet. The aim of this study was to retrospectively evaluate whether pregnancies obtained by ET or ICSI could be associated with the presence of macroscopic alterations of fetal membranes (FM) and umbilical cord (UC) and if the use of these techniques could influence neonatal outcome. Sixty-six light breed mares hospitalized at the Veterinary Teaching Hospital, University of Bologna, for attending delivery were included in the study. Mares were divided into Artificial Insemination (AI; 32/66 mares, 48 %), Embryo Transfer (ET; 12/66 mares, 18.2 %) and Intracytoplasmic Sperm Injection (ICSI; 22/66 mares, 33 %) groups. All the medical reports of mares and their foals were reviewed and data about mare, pregnancy, foaling, fetal membranes, umbilical cord and foal were recorded. The occurrence of dystocia resulted statistically different between AI group and ICSI group (p = 0.0066), and between AI group and ET group (p = 0.044). Macroscopic examination of FM revealed alterations in 30/66 mares (46 %): 8/32 in AI (25 %), 7/12 in ET (58 %) and 15/22 in ICSI (68 %) with significant lower incidence in AI compared to ET (p = 0.04) and ICSI (p = 0.002) groups. Alterations reported were chorionic villi hypoplasia, chorioallantois edema, allantois cysts, necrotic areas and greenish-grey concretions. Total length of UC resulted significantly shorter in ICSI group (49 ± 9 cm; p < 0.03) compared to AI (60 ± 17 cm) and ET (59 ± 15 cm). However, there were no differences in the incidence of foals' diseases at birth and in foals' survival among groups (p > 0.05). The results demonstrate that transfer of in vivo or in vitro produced embryos may lead to alterations of placental development, as observed in other species, without being associated with a higher incidence of neonatal morbidity and mortality. Further studies about trophoblast development, FM histological evaluation, and placental gene expression should be carried out to clarify the mechanisms underlying the placental alterations.


Assuntos
Hospitais Veterinários , Placenta , Animais , Gravidez , Cavalos , Feminino , Masculino , Estudos Retrospectivos , Hospitais de Ensino , Sêmen , Técnicas de Reprodução Assistida/veterinária , Membranas Extraembrionárias
15.
J Pathol ; 262(2): 240-253, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018407

RESUMO

Preterm labor/birth is the leading cause of perinatal mortality and morbidity worldwide. Previous studies demonstrated that T cells were crucial for maintaining maternal-fetal immune tolerance during the first trimester of pregnancy; however, their phenotypes and functions in labor and delivery remain largely unknown. We recruited three cohorts of women at delivery for T-cell immunophenotyping in the placentas, fetal membranes, umbilical cord blood, and maternal peripheral blood. Our data showed a differential enrichment of T cells during the third trimester of human pregnancy, with CD4+ T cells being more observable within the umbilical cord blood, whereas CD8+ T cells became relatively more abundant in fetal membranes. CD4+ and CD8+ T cells derived from fetal membranes were dominated by effector memory T cells and exhibited extensive expression of activation markers but decreased expression of homing receptor. In comparison with term births, fetal membrane CD8+ T cells, especially the central memory subset, were significantly increased in frequency and showed more profound activation in spontaneous preterm birth patients. Finally, using an allogeneic mouse model, we found that T-cell-activation-induced preterm birth could be alleviated by the depletion of CD8+ T but not CD4+ T cells in vivo. Collectively, we showed that CD8+ T cells in fetal membranes displayed a unique phenotype, and their activation was involved in the pathophysiology of spontaneous preterm birth, which provides novel insights into the immune mechanisms of preterm birth and potential targets for the prevention of this syndrome. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Gravidez , Animais , Camundongos , Humanos , Feminino , Recém-Nascido , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/prevenção & controle , Linfócitos T CD8-Positivos , Membranas Extraembrionárias , Fenótipo
16.
J Mech Behav Biomed Mater ; 150: 106344, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160642

RESUMO

The fetal membranes are an essential mechanical structure for pregnancy, protecting the developing fetus in an amniotic fluid environment and rupturing before birth. In cooperation with the cervix and the uterus, the fetal membranes support the mechanical loads of pregnancy. Structurally, the fetal membranes comprise two main layers: the amnion and the chorion. The mechanical characterization of each layer is crucial to understanding how each layer contributes to the structural performance of the whole membrane. The in-vivo mechanical loading of the fetal membranes and the amount of tissue stress generated in each layer throughout gestation remains poorly understood, as it is difficult to perform direct measurements on pregnant patients. Finite element analysis of pregnancy offers a computational method to explore how anatomical and tissue remodeling factors influence the load-sharing of the uterus, cervix, and fetal membranes. To aid in the formulation of such computational models of pregnancy, this work develops a fiber-based multilayer fetal membrane model that captures its response to previously published bulge inflation loading data. First, material models for the amnion, chorion, and maternal decidua are formulated, informed, and validated by published data. Then, the behavior of the fetal membrane as a layered structure was analyzed, focusing on the respective stress distribution and thickness variation in each layer. The layered computational model captures the overall behavior of the fetal membranes, with the amnion being the mechanically dominant layer. The inclusion of fibers in the amnion material model is an important factor in obtaining reliable fetal membrane behavior according to the experimental dataset. These results highlight the potential of this layered model to be integrated into larger biomechanical models of the gravid uterus and cervix to study the mechanical mechanisms of preterm birth.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Membranas Extraembrionárias , Âmnio , Feto , Testes Mecânicos
17.
Biol Open ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156650

RESUMO

During times of maternal stress, developing embryos can be exposed to elevated levels of glucocorticoids, which can affect development and permanently alter offspring phenotype. In placental species, the placenta mediates fetal exposure to maternal glucocorticoids via metabolism, yet the placenta itself responds to glucocorticoids to regulate offspring growth and development. In oviparous species, maternal glucocorticoids can be deposited into the egg yolk and are metabolized early in development. This metabolism is mediated by the extraembryonic membranes, but it is unknown if the extraembryonic membranes also respond to maternal glucocorticoids in a way comparable to the placenta. In this study, we quantified the expression of acyl-CoA thioesterase 13 (Acot13) as an initial marker of the membrane's response to corticosterone in chicken (Gallus gallus) eggs. Acot13 regulates fatty acid processing in the embryo, to potentially regulate resource availability during development. We addressed the following questions using Acot13 expression: 1) Do the extraembryonic membranes respond to yolk corticosterone early in development? 2) Is the response to corticosterone dependent on the dose of corticosterone? 3) What is the duration of the response to corticosterone? 4) Does a metabolite of corticosterone (5ß-corticosterone) elicit the same response as corticosterone? We found that corticosterone significantly induces the expression of Acot13 on day four of development and that expression of Acot13 increases with the dose of corticosterone. Further, we found expression of Acot13 is significantly elevated by corticosterone on days four and six of development compared to oil treated eggs, but not on days eight and ten. Although this response is transient, it occurs during a critical period of development and could initiate a cascade of events that ultimately alter offspring phenotype. Finally, we found that 5ß-corticosterone does not increase the expression of Acot13, indicating that metabolism inactivates corticosterone. Ultimately, this study provides insight into the mechanisms underlying how maternally deposited glucocorticoids can affect embryonic development.


Assuntos
Corticosterona , Placenta , Animais , Feminino , Gravidez , Corticosterona/farmacologia , Corticosterona/metabolismo , Placenta/metabolismo , Glucocorticoides/metabolismo , Aves , Membranas Extraembrionárias/metabolismo
18.
Eur Rev Med Pharmacol Sci ; 27(20): 9937-9946, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916363

RESUMO

OBJECTIVE: This study aimed to determine how prolapsed fetal membranes (PFM) affect perinatal outcomes in cases of cervical insufficiency undergoing emergency cerclage or expectant management. PATIENTS AND METHODS: This retrospective study analyzed perinatal outcomes in 100 pregnant women with cervical insufficiency, including those with visible PFM at the cervical external os and those with protruding PFM to the vagina. The participants were subjected to either expectant management involving prescribed bedrest or emergency cerclage. RESULTS: In the study population, 41 (41%) preferred bedrest, while 59 (59%) chose emergency cerclage. Among those managed expectantly, 10 (10%) had visible PFM, and 31 (31%) had protruding PFM. Among those who underwent emergency cerclage, 32 (32%) had visible PFM, and 27 (27%) had protruding PFM. Delivery after 32 weeks of gestation showed similar rates between women with visible and protruding PFM, regardless of the management approach chosen. These rates were significantly higher compared to those with protruding PFM managed with bed rest and emergency cerclage. Prolongation of pregnancy in protruding-cerclage and protruding-bedrest groups was 42.3±34 and 17.9±22 days, respectively. CONCLUSIONS: Our findings provide support for considering emergency cerclage as a viable option when addressing cases involving a visible form of PFM, although the recommendation is somewhat less robust in instances of protruding PFM. The implementation of an emergency cerclage procedure has the potential to extend the time frame between diagnosis and delivery, enhance neonatal survival rates, and increase the likelihood of births occurring after 28 weeks of gestation. However, it does not seem to significantly affect the rate of births taking place after 32 weeks of gestation. This could potentially lead to complications associated with premature births and extended stays in the postnatal neonatal intensive care unit. Therefore, it is crucial to offer families detailed information regarding the pros and cons of emergency cerclage.


Assuntos
Cerclagem Cervical , Nascimento Prematuro , Incompetência do Colo do Útero , Recém-Nascido , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Cerclagem Cervical/efeitos adversos , Cerclagem Cervical/métodos , Colo do Útero , Incompetência do Colo do Útero/cirurgia , Membranas Extraembrionárias , Resultado da Gravidez
19.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958809

RESUMO

Clinically, unique markers in fetal membrane cells may contribute to the search for biomarkers for preterm prelabor rupture of the fetal membranes (pPROM) in maternal blood. pPROM is associated with overwhelming inflammation and premature cellular senescence causing "biological microfractures" of the fetal membranes. We hypothesize that these pathological processes are associated with the shedding of fetal membrane cells into the maternal circulation. The aim of this study was to identify markers expressed exclusively in fetal membrane cells to facilitate their isolation, characterization, and determination of biomarker potential in maternal blood. We have (1), by their transcriptomic profile, identified markers that are upregulated in amnion and chorion tissue compared to maternal white blood cells, and (2), by immunohistochemistry, confirmed the localization of the differentially expressed proteins in fetal membranes, placenta, and the placental bed of the uterus. RNA sequencing revealed 31 transcripts in the amnion and 42 transcripts in the chorion that were upregulated. Among these, 22 proteins were evaluated by immunohistochemistry. All but two transcripts were expressed both on mRNA and protein level in at least one fetal membrane cell type. Among these remaining 20 proteins, 9 proteins were not significantly expressed in the villous and extravillous trophoblasts of the placenta.


Assuntos
Ruptura Prematura de Membranas Fetais , Placenta , Recém-Nascido , Humanos , Feminino , Gravidez , Placenta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ruptura Prematura de Membranas Fetais/genética , Membranas Extraembrionárias/metabolismo , Biomarcadores/metabolismo
20.
Placenta ; 143: 22-33, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793324

RESUMO

INTRODUCTION: To investigate the relationship between hydrogen sulfide(H2S) and the senescence level of the fetal membranes, and to elucidate how H2S affects the integrity of the fetal membranes. METHODS: The H2S and the senescence levels of fetal membranes, and the expressions of H2S synthase CBS and CSE were detected in the preterm (PT) group and the preterm premature ruptured membranes (pPROM) group. The effects of H2S donors and knockdown of CBS on the senescence level of amniotic epithelial cells, and the expression level of matrix metalloproteinases (MMPs) and epithelial-mesenchymal translation (EMT) were observed. RESULTS: The level of H2S in the fetal membranes in the pPROM group is significantly lower than that in the PT group matched for gestational age. The level of H2S is negatively correlated with the senescence level of fetal membranes. Treatment with H2S donors reduced cell senescence and MMPs expression, but did not affect EMT. CBS siRNA transfection accelerated the senescence of amniotic epithelial cells, and promoted the expression of MMPs and EMT occurrence, but l-cysteine could reverse these effects. DISCUSSION: Our study suggests that H2S, through its anti-aging effect, can influence the expression of MMPs and EMT, thereby contributing to the maintenance of fetal membrane integrity.


Assuntos
Ruptura Prematura de Membranas Fetais , Sulfeto de Hidrogênio , Recém-Nascido , Feminino , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Ruptura Prematura de Membranas Fetais/metabolismo , Membranas Extraembrionárias/metabolismo , Senescência Celular , Metaloproteinases da Matriz/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...